Turn Signal Dataset Labeling (Classification) with
Fine-Tuned ResNet-18, OpenAl API & Heuristics

Elizabeth Ann Dwenger
Institute of Computer Science
University of Tartu
Tartu, Estonia
elizabeth.ann.dwenger@ut.ee

Abstract—This report documents the development of a pipeline
for detecting and classifying vehicle turn signals from dashcam
footage provided by the Autonomous Driving Lab (ADL) at the
University of Tartu. The work encompasses 8,790,531 total car
crop images collected from YOLO crops that were produced by
ADL, with a focus on both single-frame classification and tempo-
ral sequence analysis. The pipeline progresses through multiple
stages: initial dataset cleaning and filtering, front/back vehicle
classification, temporal tracking using ByteTrack and DeepSORT,
manual annotation of light states, foundation model testing and
algorithm creation. The results highlight the limitations of cur-
rent foundation models for temporal perception tasks and demon-
strate a more classical approach which outperforms the founda-
tion models. Repository can be found at github.com/elizabeth-
dwenger/Turn-Signal-Detector-Autonomous-Driving-Lab,

Index Terms—Object tracking, Temporal classification,
ResNet-18, Turn signal detection, Autonomous driving

I. INTRODUCTION

Modern autonomous driving systems typically employ mod-
ular architectures, where distinct subsystems handle percep-
tion, prediction, planning, and control. In contrast, end-to-
end self-driving approaches use a single neural network that
directly maps raw sensor inputs (such as camera images) to
vehicle control outputs (steering angle, acceleration, braking).
While end-to-end methods have shown promise in research
settings, they remain challenging due to several factors. Train-
ing these networks with imitation learning can lead to un-
predictable generalization, as rare or unseen scenarios, like
stopping for uncommon animals or reacting to new traffic
rules, may not be correctly handled. Additionally, end-to-
end networks often require vast amounts of labeled data and
auxiliary supervision to shape their internal representations,
meaning they are not truly “free from handcrafted knowledge.”
Consequently, modular perception systems, which decompose
the driving task into interpretable components, are currently
preferred for production autonomous vehicles.

Vehicle turn signal detection represents one such critical
perception component that is specifically well-suited to com-
puter vision approaches. By detecting turn signals (left, right,
both, none), autonomous systems can predict other vehicles’
intentions and make more informed decisions in traffic sce-
narios. Examples of this include a car pulling into traffic from
a parked position or turning off of a roundabout. This work
attempts to addresses the challenge of reliably annotating these

light states from real-world dashcam footage collected during
mapping runs in Tartu, Estonia in order to create a dataset of
these light states.
The problem presents several technical challenges:
o Scale variation: Vehicles appear at varying distances and
angles
o Lighting conditions: Varying weather, time of day, and
ambient lighting
e Occlusion: Partial vehicle visibility due to traffic and
environmental factors
o Temporal consistency: Turn signals are inherently tempo-
ral events, and it was determined that sequence analysis
is required
My approach combines classical computer vision techniques
(the classification of the turn signal) with deep learning
methods (ResNet-18 and DeepSort), progressing from single-
frame classification to temporal sequence modeling.

A. Data Collection

The dataset consists of dashcam footage collected from
autonomous vehicle mapping runs in Tartu, Estonia, conducted
throughout 2024. Videos were captured using multiple camera
configurations including narrow front, wide front, and side-
facing cameras at 10 FPS.

B. Dataset Scale

As of September 2025, the dataset contains:

o Total car crops (images): 8,790,531

o Unique video sequences: 274

o Time coverage: April 2024 — September 2024
o Geographic coverage: Streets of Tartu, Estonia

C. Detection Pipeline

Car crops were generated using YOLOVI11 object detection
applied to raw video frames. For each detection, the result
includes:

o Crop image (isolated vehicle region)

o Full frame image with detection context

e Bounding box coordinates (YOLO format: normalized

center x, y, width, height)

o Detection confidence score

o Frame ID and sequence identifier

While some verions of YOLO allow object tracking, this
was not done on these video frames.

https://github.com/elizabeth-dwenger/Turn-Signal-Detector-Autonomous-Driving-Lab
https://github.com/elizabeth-dwenger/Turn-Signal-Detector-Autonomous-Driving-Lab

II. DIRECTORY STRUCTURE

The project follows a hierarchical directory structure. While
the images are stored on the high-performance computing
cluster of the University of Tartu, all scripts can be found
on the (GitHub.

A. Directory Components

The images are stored on the high-performance
computing (HPC) cluster’s shared filesystem. The path
to the images is gpfs/space/projects/ml2024/
2024-{date}_mapping_tartu_streets/camera_
{type}/predict/crops/car/{frame_id} {crop_
index}.Jjpg, which contains cropped vehicle images
extracted from detections. Filenames follow the pattern
{frame_id}{crop_index}.jpg, where crop_index is
omitted for the first detection (line 0), “2” for the second
detection (line 1), “3” for the third detection (line 2), etc
(this is important to know for sequencing the images using
DeepSort).

Under the path predict/labels/ is stored YOLO for-
mat detection labels with one text file per frame.

Under the path predict/images/ is stored full frame
images corresponding to detections. This means the full video
frame, not the cropped image (of the cars here).

Locally, under scripts/ and sampled_images/ are
stored both the processing and training scripts, as well as the
manually annotated images used for ResNet-18 training.

III. SINGLE IMAGE CLASSIFICATION
A. Dataset Cleaning

1) Image Filtering: Initial dataset filtering was performed
in order to only retain those images which were at least of
the size 50x50 pixels and had a width that was greater than
its height (as most cars should adhere to this). This was done
using shell commands (can be found in the GitHub).

2) Results: Running this shell command took around 1.5
days, and produced the following results:

Input images: 8,790,531
Filtered images: 4,731,786
Reduction rate: 46.18%

B. Front/Back Classification using ResNet-18

A binary classifier was trained to distinguish between front-
facing and rear-facing vehicle crops.

1) Manual Labeling: A subset of ten thousand images were
labeled using label_back_of_car.py where a label of
1 is the “back of the car” and O is an image that is “not of
the back of a car” (front of car, side of car, non-car image
etc). Hand-labeling the data was done over multiple days and
is estimated to have taken a total time of around 6-8 hours.

2) Dataset Splitting: The model was trained with 80% of
randomly selected data, and validated with the other 20%.

3) Model Architecture:

o ResNet-18 (ImageNet weights)

o Input size: 224x224

o Final layer: Linear(512, 2)

4) Training Configuration:

AdamW
le-4

le-4

Optimizer:
Learning rate:
Weight decay:
Batch size: 32
Epochs: 8
Loss: Cross—-Entropy

5) Inference Pipeline: Batch inference was done using the
script infer_all_front_back.py.

6) Results: Training of the model took around 20 minutes
on a Apple M4 Pro chip, and the best model produced the
following results on the validation set:

Best validation accuracy: 95.20%

Precision: 93.00%
Recall: 91.51%
Fl: 92.25%

Running this best model on the full dataset using GPU
took approximately one day and led to 1,385,302 images
“passing” the model (images of the back of cars), and was a
reduction from the previous shell script of around 70%. This
approximately 70% also matched the ratio of non-back to back
of cars seen in the hand-labeled dataset.

IV. SCHEMA DEFINITION & JSON ANNOTATION FORMAT

A. Label Schema

The labeling schema is defined in jupyter/labeling_
schema.py:

TURN_SIGNAL_LABELS = ["left", "right", "none",
n bot h n]
TAIL_LIGHT_LABELS = ["on", "off", "not_visible
n :|
B. JSON Annotation Format
A Python script for labeling

(scripts/hand_label_python.py) was created. This
was created for single-image labeling of ten thousand images,
and was later abandoned once images were sequenced, as
deciding an image state based on one image is very difficult.
Hand-labeled annotations for single-image testing are stored
in JSON format with the following structure:

[
{
"image": "relative/path/to/crop.Jjpg",
"turn_signal": "left|right |nonel|both|
unclear",

"tail_light": "onl|off|not_visible|unclear"

V. SINGLE-IMAGE CLASSIFICATION
A. OpenAl Testing Setup

To establish a baseline for large language model (LLM)
vision capabilities on this task, I evaluated OpenAI’s GPT-40
and GPT-40-mini models on a stratified sample of 130 hand-
labeled images. This experiment assessed whether foundation

https://github.com/elizabeth-dwenger/Turn-Signal-Detector-Autonomous-Driving-Lab

models could perform zero-shot turn signal classification with-
out task-specific training. This included tail light classification
as well; however, the focus was later decided to not focus
on this aspect as tail lights are required to be on in Estonia.
Moreover, often in images, tail lights were too dim to accu-
rately determine their state, and likely the labeling here was
incorrect.

Turn Signal Tail Light Sample Count

none off 30

left off 20

left on 15

left unclear 6

right off 20

right on 15

right unclear 10

none on 7

none unclear 7

Total 130
TABLE I

SAMPLE COUNTS FOR COMBINATIONS OF TURN SIGNAL AND TAIL LIGHT

STATES.

This sampling strategy overrepresented challenging cases
(unclear labels, left/right signals).

Images were encoded as base64 and submitted to
the OpenAl API with structured JSON output format
(response_format = "type” : " json_object”). All exper-
iments used temperature=0 for deterministic responses. Both
GPT-40 (full model) and GPT-40-mini (smaller, faster variant)
were evaluated.

Three prompts were tested to assess the impact of instruc-
tion clarity and label set specification.

Prompt 1 (Baseline)

You are an advanced image analysis model. Look
at the car image and determine:

1. turn_signal - one of: left, right, unclear,
none, both

2. tail_light - one of: on, off, unclear

Return only valid JSON in this format:
{
"turn_signal":
"tail_light":

"left",
"Ol’l"

This prompt included all possible labels, including ’both”
for hazard lights, with minimal task description.

Prompt 2 (Simplified Label Set)

You are an advanced image analysis model. Look
at the car image and determine:

1. turn_signal - one of: left, right, unclear,
none

2. tail_light - one of: on, off, unclear

Return only valid JSON in this format:
{
"turn_signal":
"tail_light":

"left "’
"on"

The “both” option was removed to test whether a reduced
label set would improve classification accuracy. This modifica-
tion was motivated by the fact that there were very few crops
in the “both” category, as “both” was difficult to distinguish
from the tail lights simply being on in a single image.

Prompt 3 (Task-Specific Definitions)

You are an advanced image analysis model. Look
at the car image and determine:

1. turn_signal - one of: left, right, unclear,
none

2. tail_light - one of: on, off, unclear

A turn signal should be 1lit up and indicating
which direction the car is planning to
turn

A tail light is on if lights other than the
turn signal are on.

Return only valid JSON in this format:

{

"turn_signal":
"tail_light":
}

"left",
"on"

This prompt added explicit definitions to clarify the distinc-
tion between turn signals and tail lights, addressing potential
ambiguity when both may be illuminated simultaneously.

All results are discussed in section (Results and Anal-

ysis).
VI. TEMPORAL IMAGE CLASSIFICATION

Due to the difficulty to hand label single-images with
turn signals, I decided to sequence the frames. Tracking, or
sequencing, is the process of following an object (in this case,
a car) over multiple frames, and ordering this output.

Fig. 1. Example of a difficult to label image.

A. Detection CSV Consolidation

DeepSORT (Deep Simple Online and Realtime Tracking) is
an object tracking algorithm that extends the original SORT
algorithm by incorporating appearance information through a
deep neural network [1]]. This allows it to maintain consistent
identities for objects even during occlusions or when objects
cross paths. In practice, each row in the CSV corresponds to a

detected object in a single frame, including the frame number,
bounding box coordinates, detection confidence, and an object
ID if it has already been tracked.

In order to create a CSV that would work for DeepSort, I
created the script prepare_detections_from_yolo_
txt.py. This script takes the YOLO ouput bounding boxes,
class labels, and confidence scores and converts them into the
format expected by DeepSORT.

1) Implementation Details: The script begins by extracting
frame IDs from the video or image sequence to keep track
of which detections belong to which frame. It then converts
the bounding box coordinates provided by the YOLO detector
(which are normalized relative to the image size) into absolute
pixel coordinates.

2) Coordinate Conversion: YOLO outputs bounding
boxes in the format of normalized center coordinates and
width/height relative to the image size. To convert them to
pixel coordinates and the top-left/bottom-right format expected
by DeepSORT, the following transformations are applied:

X_center = cx * img_width

y_center = cy % img_height
box_width = w *» img_width
box_height = h » img_height

x1 = x_center - box_width / 2
yl = y_center - box_height / 2
x2 = x_center + box_width / 2
y2 = y_center + box_height / 2

Output Schema:

sequence, frame_id, crop_path, frame_path, width,
height,
class_id, score,x1,y1l,x2,vy2

B. DeepSORT Output

Metric Value
Total tracks 40,872
Mean track length 26.1 frames
Median track length 11.0 frames

Max track length

TABLE II
DEEPSORT TRACKING SUMMARY STATISTICS.

1,756 frames

C. Sequence Sampling

Turn signals exhibit a characteristic periodic behavior, typ-
ically blinking at frequencies between 1.0 and 2.5 Hz (60-
150 blinks per minute) as mandated by automotive safety
regulations. In contrast, tail lights and brake lights remain
continuously illuminated when active, producing a steady-state
intensity profile. Looking at the images (10 FPS video frames)
and experimenting with different sampling rates, I determined
that sampling every fourth image reliably would show an on
and an off image one after another. While I did do research
into the regulations about the frequency of flashing for turn
signals, I found that turn signals can vary from car to car (and

if one bulb on a side is dead, many vehicles will intentionally
blink the remaining signal at a higher rate due to thermal
flasher relay that depends on electrical load, adding another
source of variation), so every fourth image was chosen, and
worked quite well.

ft Ml x

ft

Fig. 2. Example of every fourth image flashing on and off when looking at
every image in a sequence.

D. OpenAl Performance on multiple images

Having established baseline performance on single images
(VII), the evaluation was extended to temporal sequences to
assess whether foundation models could use frame-to-frame
context for improved turn signal detection.

Sequences were constructed using the sampling strategy
described above. Rather than submitting individual frames, all
frames in a sequence were arranged into a spatial grid (left-to-
right, top-to-bottom order) and presented as a single composite
image to the vision model. This grid-based approach enables
the model to observe temporal evolution while remaining
within the single-image API constraints.

A single prompt template was used for temporal sequence
evaluation, as preliminary experiments and the stronger per-
formance of the computational heuristic method (described
below) suggested diminishing returns from extensive prompt
engineering and resource use. The prompt is shown below:

Analyze this grid of N sequential car images (
left-to-right, top-to-bottom).

Task: Determine turn signal status:
‘‘left’’: Left turn signal blinking

— ‘Y‘right’’: Right turn signal blinking

- ‘Y‘hazard’’: Both signals blinking

- Y‘none’’: No turn signals active

Key points:

- Turn signals blink
frames)

- Look for amber/orange lights

- Hazard = both sides blink together

\end{quote}

(on/off pattern across

The model was instructed to respond in structured JSON
format. Due to the superior performance of the computational
heuristic method and API cost considerations, foundation
model evaluation was limited to a subset of 10 sequences sam-
pled from the full test set (128 images total, most sequences
including 13 images per sequence). This limited evaluation
served to assess whether foundation models could provide

value beyond the heuristic approach, rather than establishing
comprehensive performance metrics.

Both GPT-40-mini and GPT-40 were evaluated, with a 1-
second delay between API calls to respect rate limits. All
requests used temperature=0.1, and response_format={
"type": "json_object" }

Track 636 in 2024-04-24-15-17-40_mapping_tartu_streets/camera_fl

Frame 2072
359x278px

Frame 2076
358x276px

Frame 2080
359x279px

Frame 2092
359x279px

Frame 2096
359x277px

Frame 2100
359x277px

Fig. 3. Sequenced images of flashing right turn signal.

E. Turn Signal Heuristic Model

Beyond zero-shot foundation models, I developed a com-
putational heuristic method to detect turn signals without ma-
chine learning. This approach leverages the inherent temporal
and spectral properties of turn signal behavior to distinguish
active signals from static tail lights.

The method begins by isolating the yellow-orange spectral
band characteristic of turn signal emissions. Images are first
converted from RGB to HSV (Hue-Saturation-Value) color
space, which provides perceptual uniformity and separates
chromatic information from luminance. A color mask is
applied to extract pixels within the hue range of 15°-35°
(yellow-orange), with saturation values exceeding 100 (on a
0-255 scale) to exclude pale or washed-out regions, and value
thresholds above 100 to reduce ambient reflections. This color-
selective filtering produces a binary mask.

Fig. 4. Masking bright yellow color channels.

For each frame in a sequence, the sum of masked pixels
provides a scalar intensity measure representing the total
yellow light present. This intensity time series captures the

temporal evolution of potential turn signals across the se-
quence. By sampling frames at a known rate (every fourth
image after subsampling from the original 10 FPS video),
a construct uniformly sampled signal suitable for frequency
domain analysis was constructed.

Raw Yellow Intensity

Fig. 5. Raw yellow intensities over frames.

To detect periodicity in the intensity time series, a Fast
Fourier Transform (FFT) was used, which decomposes the
signal into constituent frequency components. The intensity
series is first normalized to allow the FFT to capture oscillatory
behavior rather than absolute brightness. The FFT produces
a spectrum of frequency components, from which positive
frequencies are extracted and peaks are identified within the
expected turn signal frequency band (1.0-2.5 Hz). A signal
is classified as periodic if the peak power within this band
exceeds three times the mean spectral power, which was
chosen to distinguish true periodic signals from noise.

To distinguish between left and right turn signals, the
method performs spatial analysis by defining regions of in-
terest (ROIs) corresponding to the left and right sides of
the image. For a rear-facing vehicle crop, the left ROI en-
compasses the leftmost 40% of the image width, while the
right ROI covers the rightmost 40%, both vertically bounded
to the lower 60% of the image where turn lights typically
appear. Intensity time series are extracted independently for
each ROI, and the standard deviation of each series quantifies
the temporal variability (i.e., blinking activity) in that spatial
region. A higher standard deviation indicates more pronounced
intensity fluctuations, characteristic of an active turn signal.

The final classification follows a hierarchical decision tree:

1) Global Periodicity Check: If the full-image intensity
series exhibits no periodicity and low variance (standard
deviation less than 5% of mean intensity), classify as
none (no active turn signal).

2) Activity Threshold: If blinking is detected but the
maximum ROI activity falls below a threshold (which
was determined from a test set), classify as none.

3) Bilateral Comparison: Compare left and right ROI
activity levels:

o If the ratio of minimum to maximum activity ex-
ceeds 0.7, both sides are blinking similarly, classify
as hazard.

o If left activity exceeds right activity, classify as left.

o Otherwise, classify as right.

Some advantages and disadvantages to this method are
mentioned below.
Advantages:

e Zero training data required

o Interpretable decision making based on physical signal
properties

o Computationally efficient (no neural network inference)

o Generally robust to appearance variation (vehicle color,
make, distance)

Limitations:

o Sensitive to threshold tuning (activity threshold, period-
icity detection)

o Requires sufficient temporal coverage (minimum se-
quence length ~10 frames)

¢ ROI localization assumes standardized vehicle orientation

« Fails for non-standard lighting configurations or severe
occlusion

VII. RESULTS AND ANALYSIS
A. Single-Image API

Accuracy of each model and prompt is displayed below:

Model Prompt Accuracy Left Right None
gpt-40-mini prompt 1 44% 36% 5556 28%
gpt-40 prompt 1 63% 58% 80.00 21%
gpt-4o-mini prompt 2 45% 34% 5556 43%
gpt-40 prompt 2 65% 61% 80.00 29%
gpt-40-mini prompt 3 40% 15% 60.00 50%
gpt-4o0 prompt 3 66% 61% 82.22 28%
TABLE III
OVERALL TURN SIGNAL ACCURACY AND PER-CLASS ACCURACY FOR
OPENAI APL.

GPT-40 substantially outperformed GPT-40-mini (70% vs.
40%), which shows that model capacity matters for this task.
Prompt variations have only a marginal effect on overall accu-
racy. Removing the both label (Prompt 2) and adding explicit
task definitions (Prompt 3) lead to modest improvements in
certain per-class accuracies, but do not fundamentally alter
model behavior. This suggests that the primary limitation
is not prompt ambiguity, but rather the intrinsic difficulty
of distinguishing turn signals in static images. These results
seem to indicate that single-frame classification is insufficient
for reliable turn signal detection in real-world conditions,
regardless of model scale or prompt engineering.

B. Multiple-Image API

Model Sequence Acc. Left Right None
GPT-40-mini temporal-grid 40% 40% 40% 0%
GPT-40 temporal-grid ~ 70% 100% 40% 0%
TABLE IV
TURN SIGNAL CLASSIFICATION ACCURACY ON TEMPORAL SEQUENCE
EVALUATION.

The introduction of temporal context via grid-based im-
age sequences insignificantly improves overall accuracy for
GPT-40 from approximately 66% (single image) to 70%;
however, the limited sequences makes this result unreliable.
One observation from these results is the inability of both

foundation models to correctly classify sequences in which
no turn signal is active, resulting in an accuracy of 0% for
the none class. This consistent failure indicates a systematic
bias toward predicting the presence of a turn signal when
processing vehicle imagery. This may arise from multiple fac-
tors, including the lack of ”prompt engineering” (this was due
to trying to limit costs), inherent challenges in distinguishing
inactive turn signals from static tail lights, and the foundation
model not being able to look at a sequence/grid of images and
understand the temporal context.

C. Heuristic Method

In contrast to foundation model approaches, the computa-
tional heuristic method achieves an overall accuracy of 80%,
outperforming both single-image and temporal foundation
model evaluations.

Class Accuracy
Left 0.57
None 0.83
Hazard 0.76
Right 0.61
TABLE V

PER-CLASS ACCURACY AND NUMBER OF EVALUATION WINDOWS.

These results are from running the heuristic method on
212,919 hand-checked images, encompassing 1010 sequences.
In this hand-labeled sequence set, 183,964 of the images were
classified as “none”, 17,142 as left, 11,667 as right, and 146
as hazard.

VIII. DISCUSSION

Recent advances in large-scale foundation models have led
to their widespread adoption across a variety of perception
tasks, often with the expectation that general-purpose models
can replace task-specific pipelines with minimal engineering
effort. While these models have demonstrated impressive
performance on static image understanding and zero-shot
classification benchmarks [2f], the results of this project show
some limitations when such models are applied to temporal
perception tasks, specifically in autonomous driving.

These findings suggest that the tested foundation models
lack an explicit mechanism for reasoning about temporal
periodicity, a feature of turn signals. While the models can
visually detect illuminated regions and reason semantically
about vehicle components, they appear unable to distinguish
static illumination from intentional signaling. The grid-based
representation of time, while intuitive to humans, does not pro-
vide a sufficiently structured temporal signal for the models to
perform reliable frequency-based reasoning. Importantly, these
results do not imply that foundation models are unsuitable
for autonomous driving perception more broadly. Rather, they
show the risk of applying such models naively to tasks.

IX. CONCLUSION

This work presents an experiment for creating a pipeline for
large-scale vehicle turn signal detection from dashcam footage,

spanning data collection, filtering, tracking, and classification.
Through this, I demonstrate that turn signal detection is
inherently a temporal problem that cannot be reliably solved
using static imagery alone. Zero-shot foundation models, while
impressive in many vision tasks, exhibit critical failure modes
in this domain. In contrast, the presented computational heuris-
tic model achieves superior accuracy, while still not being
robust when compared to hand-labeled images.

X. FUTURE WORK

Several directions emerge from this work that could further
improve turn signal detection and expand the utility of the
dataset. This study primarily evaluated image-based founda-
tion models with limited temporal reasoning capabilities. An
extension is to investigate video-native foundation models,
such as the NVIDIA Cosmos model family, which are trained
on video [3]]. These models may better capture temporal
patterns inherent in turn signal behavior, potentially addressing
some of the limitations observed in the grid-based image
representations. This work also focused on rear-facing vehicle
crops; however, front-facing turn signals also convey valuable
intent information, particularly in intersections and roundabout
traffic scenarios.

The dataset produced by this provides a foundation for
training task-specific detection models. Future work includes
using the labeled crops and temporal sequences to train object
detection or segmentation models such as YOLO or Grounding
DINO.

REFERENCES

[1] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” 2017. [Online]. Available:
https://arxiv.org/abs/1703.07402

[2] R. Ramachandran, A. Garjani, R. Bachmann, A. Atanov, O. F. Kar,
and A. Zamir, “How well does gpt-4o understand vision? evaluating
multimodal foundation models on standard computer vision tasks,” 2025.
[Online]. Available: https://arxiv.org/abs/2507.01955

[3] NVIDIA, :, A. Azzolini, J. Bai, H. Brandon, J. Cao, P. Chattopadhyay,
H. Chen, J. Chu, Y. Cui, J. Diamond, Y. Ding, L. Feng, F. Ferroni,
R. Govindaraju, J. Gu, S. Gururani, I. E. Hanafi, Z. Hao, J. Huffman,
J. Jin, B. Johnson, R. Khan, G. Kurian, E. Lantz, N. Lee, Z. Li,
X. Li, M. Liao, T.-Y. Lin, Y.-C. Lin, M.-Y. Liu, X. Lu, A. Luo,
A. Mathau, Y. Ni, L. Pavao, W. Ping, D. W. Romero, M. Smelyanskiy,
S. Song, L. Tchapmi, A. Z. Wang, B. Wang, H. Wang, F. Wei,
J. Xu, Y. Xu, D. Yang, X. Yang, Z. Yang, J. Zhang, X. Zeng, and
Z. Zhang, “Cosmos-reasonl: From physical common sense to embodied
reasoning,” 2025. [Online]. Available: https://arxiv.org/abs/2503.15558

https://arxiv.org/abs/1703.07402
https://arxiv.org/abs/2507.01955
https://arxiv.org/abs/2503.15558

	Introduction
	Data Collection
	Dataset Scale
	Detection Pipeline

	Directory Structure
	Directory Components

	Single Image Classification
	Dataset Cleaning
	Image Filtering
	Results

	Front/Back Classification using ResNet-18
	Manual Labeling
	Dataset Splitting
	Model Architecture
	Training Configuration
	Inference Pipeline
	Results

	Schema Definition & JSON Annotation Format
	Label Schema
	JSON Annotation Format

	Single-Image Classification
	OpenAI Testing Setup

	Temporal Image Classification
	Detection CSV Consolidation
	Implementation Details
	Coordinate Conversion

	DeepSORT Output
	Sequence Sampling
	OpenAI Performance on multiple images
	Turn Signal Heuristic Model

	Results and Analysis
	Single-Image API
	Multiple-Image API
	Heuristic Method

	Discussion
	Conclusion
	Future Work
	References

