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ABSTRACT: Reward functions are an indispensable part of reinforcement learning. They represent, quantify and determine
the reward which an agent tries to maximize and what it adjusts its policy for. Through this they play a major role in how
well an agent performs at a given task. Through their simplicity and observability video games like Snake present a great
opportunity for studying reinforcement learning agents under varying conditions like changes in the reward function. For
this paper an agent which plays Snake was trained and tested with five different reward functions to observe and analyze
their influence on the performance of that agent. The selected reward functions represent different strategies and heuristics.

1 INTRODUCTION
Games have long since been a staple of machine learning, from Deep Blue which beat world chess champion Garry
Kasparov in 1996 to modern programs such as AlphaGo in 2016 [16]. This is true, in particular for reinforcement
learning, in this field games provide critical features for training agents. They have easily observable environments,
meaning that the agent can see the playing field, and games also follow predetermined rules. Additionally, they
allow for an easy quantification of performance and rewards. Reward functions are an important aspect of
reinforcement learning as they allow the agents to learn and develop strategies to maximize the expected reward
[1]. This paper will focus on the influence of different reward functions on an agent’s learning behavior. To this
end the game, Snake, was chosen due to its relatively simplistic environment. A player has 3 goals: 1. Collide
headfirst with the apple to ‘eat’ it. 2. Do not collide with its own body. 3. Do not collide with the border wall.

In this paper, the learning is done through reinforcement learning, more specifically, deep Q-learning (DQN).
In the implementation, DQN determines what the best action is based on observations from the environment and
previous knowledge acquired by the agent [11]. It takes the current state (position, direction, apple position)
represented as cells as an input for the network, applies a ReLU activation function, and outputs the action that
the agent should take. While training, the Bellman Equation is used to produce a Q-value based on the old state
and a Q-value regarding the current state [12]. It takes the loss between the target and the predicted value and
performs backpropagation to readjust its weights regarding the action and its reward.

This environment is partially deterministic, meaning it is dependent on the snake’s actions; the only stochastic
element is the apple [13]. Additionally, the environment is observable, which makes the training phase easy to
manipulate. Due to the uncomplicated nature of the game, it is an ideal environment in which to investigate the
influence of different reward functions. The influences of each reward function becomes evident through the
learning performance of the snake during training.

2 BACKGROUND INFORMATION

2.1 Machine Learning in the Gaming Industry
Machine learning is utilized to create agents which are able to produce human-level or beyond performance in a
respective game. Games have been used as a means to challenge artificial intelligence due to their complexity;
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conversely, games have the benefit of being low-risk and rule-based. The variety of games available today also
provide a variety of challenges for the available machine learning algorithms. [14]

2.2 Reinforcement Learning
Reinforcement learning, an area of machine learning which utilizes rewards to influence the actions of an agent,
is used to train these agents to play games. One benefit of reinforcement learning is that the implementation of
the rules of a game is not necessarily required. Rather, rules and strategies are learned through trial and error,
with support from the rewards. [11] Moreover, unlike supervised learning, reinforcement learning does not need
explicit corrections of poor actions. However, reinforcement learning may suffer from the exploration-exploitation
trade-off, where a better action may remain hidden in favor of an action that has already proven to lead to some
reward. [14] Additionally, another pitfall of reinforcement learning is the credit assignment problem. This is the
issue of determining the magnitude of the reward that is given for any particular action [9].

2.3 Deep Q-Learning
The algorithm known as Q-learning uses a Markov decision process and decides on which action to take by
updating a Q-function from the agent’s experience [11]. The current state of the agent is the only thing that
determines its succeeding action (as dictated by the Markov model). A reward function is implemented into
the algorithm which rewards or punishes the agent based on the outcome of its action. The most advantageous
Q-function is found by updating the Q-value using the Bellman Optimality Equation [12]. Measuring the quality
of a Q-function is computationally burdensome; this aspect is typically considered the learning part of Q-learning.
Q-learning has proven successful in multi-player games, such as StarCraft, where a Q-learning algorithm was
trained to conquer opponents [11]. An extension to Q-learning is deep Q-learning, an algorithm that approximates
the action-value function using deep neural networks [5]. It has the ability to learn policies from high-dimensional
inputs and can approximate future rewards [14]. The approximation of these rewards is done by mini-batch
sampling of states, actions, and rewards, which then are used to estimate the action-value function.

3 RESEARCH QUESTION
How and why do different reward functions influence the performance of an agent’s reinforcement learning model
during the training phase in the game Snake?

4 HYPOTHESIS
Based on the research question the following null and alternative hypothesis were created. The measure of
performance was quantified through the average score. The hypothesis is purposefully undirected to account for
both improvements or deterioration in performance.

• Null hypothesis: There is no difference between the mean scores whilst training with different reward
functions; 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5.

• Alternative hypothesis: There is a difference between the mean scores whilst training with different reward
functions; 𝜇1 ≠𝜇2 ≠𝜇3 ≠𝜇4 ≠𝜇5.

5 METHODS
To implement the different reward functions a simple snake environment with a DQN network was selected as
the basis. This environment was created by Patrick Loeber [10]. After understanding of the code, and determining
if it would have the potential to help in answering the research question, the code was modified to suit the needs
of this paper. Ensuring that the code worked and the methods were applicable required thorough understanding
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Reward functions Reward
Apple Collision (Death) Additional actions

Simple reward
function + 10 - 10 0

Manhattan based
reward function + 10 - 10 + 0.25 (correct direction)

Inverse Manhattan
based reward function + 10 - 10

+ ((furthest distance from apple -
manhattan distance snake to apple)

/ 55.0)
Increased Score based

reward function
+ (10 +

((score – (score % 5)) / 2)) - 10 0

Punishment based
reward function + 1 - 10 0

Table 1. Rewards and penalties for all implement reward functions

of the underlying mechanisms implemented. Every reward function, other than the simple reward, was manually
implemented. Table 1 includes a short overview of the functions.
All implementations can be found in the appendix. The simplest implementations were done for the simple

reward function and the punishment based reward function. These required a change in the respective assigned
values. The Manhattan distance reward function and the Inverse of the Manhattan distance both required the
addition of the calculation of the Manhattan distance. This distance then is used to judge whether the snake
makes a move that is in line with the Manhattan heuristic. The Manhattan distance is determined by calculating
all possible values of the next state (snake turning up, down, left, or right). Then it calculates the distance between
the food and the body depending on those possible values. From this it determines the direction that has the
minimum distance and in which direction the snakehead should turn, to fulfill this shortest distance. In the
implementation, the snake is rewarded if the direction it turns to is the same as the best direction calculated by
the Manhattan distance. If it does not turn in the same direction no reward is given. The Manhattan reward is an
additional reward to the ones already implemented, reward for the apple and punishment for death.

For the inverse of the Manhattan distance every cell on the map holds a certain reward. The closer this is to the
apple the higher this reward is, with the apple representing the maximum reward. A good visualization of this
would be a heat map where a single source of heat is coloured red with heat bleeding out into the surrounding
area. An alternative perspective is that the inverse of the Manhattan distance turns the map into the inverse
of a loss surface where the lightest point represents a global maximum. This was implemented by taking the
remaining distance, calculated through the Manhattan heuristic, to the apple. The remaining distance of where
the head is located was deducted from the absolute maximum number of cells away from the apple and a reward
is calculated from it. Thus, a snakehead that is farther away will have a smaller difference between the maximum
steps away which results in a smaller reward, compared to a snake closer to the apple. The difference between the
maximum block steps away and the current block steps away would be larger, thus resulting in a larger reward.
This reward, like the Manhattan reward, is additional to the existing reward.

The increased reward function required the addition of a dynamic calculation of the reward that increases and
updates it for every five points the snake obtains. Thus, the reward the snake can obtain continuously grows with
the length of its body. Long-term survival thus maximizes the reward an apple can bring. The reward ensures
that for every 5 points it gains the reward regarding the apple increases by 2.5 points to the base reward of 10. To
implement this, the module of the score is taken and then the result is subtracted from the current score. This
ensures that the score is always rounded to the floor of the numbers divisible by 5. In addition to the baseline
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code and the extra reward functions, implementation regarding automatically transferring all the results from
the experiments into a CSV files was added.

6 EXPERIMENTAL SETUP
To test the hypothesis about the differences in performance between the reward functions during the training
phase, the following experimental setup was created and followed. In the snake reinforcement environment only
the reward functions were changed, thus the reward functions are the independent variable of this test. The
hyperparameters and other factors were kept the same to ensure that the observed effect was caused only by the
reward functions. The simple reward function was chosen as the control variable against which the other reward
functions could be compared. The simple reward function was tested prior to the other reward functions and
achieved what is considered a reasonable performance given the limitations of the agent, thus it represents a
good baseline for the models based on other reward functions.

For each reward function, 5 trials were run with 5000 games each. More than 1 trial was chosen to ensure that
the results of the trials were not caused by random fluctuations [2]. The number of trials and games was limited
by training time and available computational power. For each episode of each trial, the score was recorded in
a CSV file and for each trial, the average score was calculated; the scores were then averaged for each reward
function. The overall average of a reward function is the independent variable of this experiment.
Since the research question also aims to understand how potential differences in performance occur, the

number of episodes the agent needed to start performing well was also observed. The threshold for this was set
at the number of games at which the agent reaches an average score of ten. This number was then also averaged
over across the trials. It represents how quickly the different reward functions can lead the agent to start playing
better games. Since the agent’s trained for this experiment will not be deployed no considerations were made
towards a real-world use case or production.

7 RESULTS
During the training phases the agent continuously learned from previous experiences. All agents began with a
cold-start, meaning that they had no prior knowledge about the environment or the rules of the game. The initial
model that was run was the simple reward function, of which the results can be seen in Figure 1. According
to the results shown in the graph, we can see that the learning process starts slowly but rises steeply between
around 100-300 games and slowly plateaus at between 30 to 35 points on average after about 1000 games in all of
the trials.

The Manhattan distance was the next reward function which was trained. The results can be seen in Figure 2.
The graph shows a very similar behavior compared to the simple reward function in Figure 1 with two minor
differences. The results do not plateau as completely as the simple reward function does; there is a noticeable
slight continuous upward trend in all the trials with the average scores between 30 and 35. Furthermore, the
performance improves slightly slower than the simple reward function.
The increased score based reward function was the next model for which results were collected. As can be

seen in the graph in Figure 3, the agent starts off relatively similar to the previous two, but eventually the average
score plateaus around 25 and 30 points as opposed to the two initial graphs which plateaued between 30 and
35 points. The performance improvement does seem to occur at a similar rate as the Manhattan based reward
function.

The punishment reward function was the next one for which results were collected for. As can be seen in the
graph plotted in Figure 4, the graph shows very varied results. Two of the trials never managed to collect any
rewards, and stayed at a 0 point average. The other three trials each took longer to improve their performance
than the previously tested functions and their results plateaued between 25 to 27 points towards the end. This
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average is close to the average of the increased reward based function but smaller than the averages of the simple
reward and the Manhattan distance reward function.

The final reward function which was used for training is the Inverse of the Manhattan distance reward function.
As can be seen in Figure 5, the results show that this reward function generally did not perform well compared
to the others; the average score never went over 1 for any of the trials. They all performed quite equally for
approximately the first 500 games, after that only two of the trials, Trial 5 and Trial 3, manage to show any
improvement in the average score.

Fig. 1. Simple reward function - score of 5000 games
throughout training phase

Fig. 2. Manhattan based reward function - score of
5000 games throughout training phase

Fig. 3. Increased score based reward function - score
of 5000 games throughout training phase

Fig. 4. Punishment based reward function - score of
5000 games throughout training phase

Fig. 5. Inverse Manhattan based reward function - score of 5000 games throughout training phase

Figure 6 displays the average performance across all trials for each reward function. As can be seen, the
simple reward function and the Manhattan distance were the most similar, with the noticeable differences being
that simple reward picks up faster early on, but plateaus slightly sooner and is eventually out performed by
the Manhattan distance. The increased reward function plateaus sooner than these two functions, while the
punishment reward function plateaus later, at around 2000 games, and at a much lower average score. Finally, the
inverse Manhattan distance performed poorly compared to the rest of the reward function models.



6

Fig. 6. Average score of every reward functions during the training phase

In addition to the average score the number of games that it takes an agent to cross the threshold of a 10 point
average was also recorded. This represents the number of games it takes an agent to start performing better.
According to the results the simple reward function improved the fastest, followed by the Manhattan distance
and the Increased reward function which have the same average number of games to cross the threshold. The
punishment function is the slowest with two trials that never reach an average score of 10 and above. The Inverse
function does not reach a 10 point average in any trial. The table with this data can be found in the appendix.

8 STATISTICAL ANALYSIS
Following the qualitative analysis of the results, two significance tests were performed to check the hypothesis
quantitatively. The first test that was performed was the ANOVA one-way test [8]. This test is used to test
for significant differences in means between three or more independent groups. This test was chosen to check
if further testing of the hypothesis is appropriate. If this test had returned no significant differences between
the means this would already indicate that the reward functions do not have a significant influence on the
performance of the agent. To conduct this test the scores for each trial of a reward function were averaged
over; this was done for each reward function leading to five groups that were tested using the ANOVA test. The
significance level was set to 5%; 𝛼 = 0.05.

Fig. 7. ANOVA one-way test
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As figure 7 shows, the test results of the ANOVA test indicate a significant difference between the means of all
tested reward functions; the calculated p-value is so small that the software used to conduct the test rounded it to
0. Therefore, the p-value is smaller than the significance level ; 0 < 0.05. The null-hypothesis is rejected as there
is significant difference between the performances of the reward functions. However, the ANOVA test gives no
indication as to which of the tested groups are significantly different. Therefore, further testing was conducted.
The simple reward function was chosen as the baseline against which to test the other models; for this reason, a
t-test for independent means was performed for each model against the simple model [6]. The significance level
was set at 5%, 𝛼 = 0.05. A two-tailed test was selected since the hypothesis is undirected. This test returned the
following results:

Reward functions compared to the simple reward P-value Conclusion
Manhattan reward function P-value = 0,003472284 P-value <𝛼
Inverse reward function P-value = 9.13e-130 P-value <𝛼
Increasing reward function P-value = 0 P-value <𝛼
Punishment function P-value = 0 P-value <𝛼

Table 2. Results of t-test for independent means for the reward functions

For every reward function tested against the simple reward function the p-value is smaller than the significance
level 𝛼 , this means that the mean of every reward function is significantly different compared to the mean of
the simple reward function, this gives no indication as to the direction of the significance. In the case of the
increasing reward and the punishment function the p-value was very small and thus rounded to 0 by the software
used to conduct the test. Both significance tests lead to a rejection of the null hypothesis, there is evidence for a
difference in performance between the reward functions. The full results of the conducted tests can be found in
appendix B.

9 DISCUSSION
The results allow for an opportunity to discuss the reward functions and their importance for an agent’s
performance. The simple reward function and the Manhattan distance performed best. With the Manhattan
distance, the agent gains 0.25 points for each step it takes in the direction of the Manhattan distance heuristic.
This approach proved to be the most effective in maximizing the agent’s performance, as it averaged the highest,
illustrated in Figure 6. Relative to the Manhattan distance, the implementation of the simple reward function
performances nearly as proficient. We can see both Manhattan and the simple reward function to be close in
average points for each of the 5 trials. For the simple reward function, the agent reaches its peak performance
faster than in the Manhattan reward function, yet it also plateaus. Meanwhile, the Manhattan reward function
continues to improve its performance. In the Manhattan reward function, the agent will optimally take a maximum
of 2 turns to reach the apple from its current position. The agent receives a reward when it turns in the correct
direction that correlates to the Manhattan distance heuristic. Thus, it appears as if it developed a strategy that
causes fewer self-collisions by reducing the number of overall turns it takes; this decreases the likelihood of
the snake colliding with itself. This reward function was created to lessen the influence of the delayed reward
problem that is present in reinforcement learning. By adding intermediate rewards, it minimizes the influence of
not receiving immediate feedback for each action it takes. The snake’s ability to create good strategies can also
be based on intermediate actions within the Manhattan heuristic instead of just knowing that getting the apple is
advantageous and death is not.

The increased reward function does not perform as well relative to the simple reward function or the Manhattan
reward function. However, it does outperform the Inverse and the Punishment reward function. The increased
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reward steadily improves the agents performance. The increased reward function performed less well than
expectations. It was predicted that the increased reward of the apple for every 5 points obtained would incentivize
the snake to grow. As the snake length increases, the chance of death increases, thus at a certain length, it
would start accumulating negative rewards causing the snake’s performance to plateau. The increase in the apple
reward was expected to help stimulate it to develop a better long-term strategy. This, however, was not what was
observed. This could be due to sparse reward: while the reward does increase every 5 points the snake obtains,
the intermediate states has no meaningful reward. This illustrates the problem of credit assignment rewards, as
the expectation of the reward cannot be maximized to develop a good strategy. Even if the apple reward does
increase, the moment the snake collides and dies, it considers the game a bad game. It could have completed a
series of perfect moves, but if the last action resulted in death, the previous actions are considered bad.
Lastly, the reward functions, inverse Manhattan distance and punishment reward function, have the worst

overall performance relative to the other reward functions. For the inverse Manhattan reward function, with every
ring of cells closer to the apple, the cell increases in the reward. This was done with the expectation that the snake
would learn to move to the apple to maximize its reward. After a few games, it seemed to immediately go straight
and hit the border. It would maintain this strategy for the remainder of the games, thus not accumulating any
score points and thereby performing extremely poor. It is suspected that this strategy is caused by the exploration
vs. exploitation trade-off. While the agent does not receive the large reward of the apple, it still gains a reward by
moving across the cells. While it is not a lot of points, it is still regarded as doing well as it is accumulating points.
This results in exploitation of the minimal points, and not exploring to find rewards that would be worth a lot,
such as the apple. The punishment reward function performs better than the inverse Manhattan reward function,
presumably due to its clear goal and avoidable actions. Even if the reward regarding the apple is smaller than in
the Simple reward function, it still forms a workable strategy to maximize the apple points. Yet it is clear that the
snake is less incentivised to accumulate a higher score in comparison to the higher apple rewards.
Overall, the obtained results depict that the reward function significantly influences the performance of a

reinforcement learning agent. The results allow an overview and understanding of how various implementations
of reward functions can improve or impair an agent’s performance. This conclusion is supported by the statistical
analysis that concluded that the average performance for each reward function was significantly different and
thus allowed for the null hypothesis to be rejected.
Throughout the experimentation of various reward functions, the agent was confronted with a technical

limitation; it developed the tendency to collide with itself. The snake’s collision with its own body is due to it’s
inability to be aware of its own body. As the snake’s length grows it was not aware of how long it is, it would
then take turns that would trap itself between its own body. To solve this, a convolutional layer needs to be
implemented into the DQN. Convolution layers are a type of deep neural network layers which are often utilized
to classify or generate pictures. The shape of this layer is determined by some knowledge of its purpose, for
example, acquiring the apple or keeping track of its body. Neural networks are often used in image classification
or generation, however, they have further been applied to games in order to gain an understanding of how
algorithms influence agents and the way they interact with their respective environments in order to improve
and maximize their performance. [15] The first layer in a convolution neural network applies a convolution
operation to the input, passing the result to the next layer. With the application of the convolution layer in the
respective algorithm, this would significantly improve the performance of snake [15]. As the agent continues
learning from each output layer, it is able to record the improvement and further create long-term strategies
which would maximize its performance. In the respective technical issues which occurred during the testing of the
agent, it sometimes fails to efficiently learn from its previous outcomes, resulting in the snake devising inefficient
long-term solutions that failed to maximize its performance. For example, the agent managed to achieve high
scores of around 70-80 but failed to do so consistently. For further research, implementing a convolution layer
would be an interesting approach to improve the agent.
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Although it has been discussed that convolution layers have a significant influence on the performance of a
reinforcement learning agent, overfitting the data can also affect the snake’s performance [17]. While environment
overfitting can occur in any learning algorithm, it is particularly pernicious in reinforcement learning. Unlike
supervised learning, where evaluations are based on fixed data sets, reinforcement learning relies on observations
of the environment. In reinforcement learning, there is thus no data set the agent trains on, so it must create its
own data. Overfitting can occur, by over-training because the agent is constantly being trained on one reward
function and this results in the agent being unable to learn an optimal policy by maximizing a reward function
rather than minimizing a loss function, which leads to inefficient performance.

10 CONCLUSION
In conclusion, this paper illustrates the influence of different reward-focused functions and the influence it has
on the agent and the reinforcement model created during the training phase. Due to the fully observable and
deterministic nature of the Snake environment, it allowed for a transparent environment in which manipulation
would be easily observable while the noise of additional factors was kept to a minimum. Through this, the research
question - “How and why do different reward functions influence the performance of an agent’s reinforcement
learning model during the training phase in the game Snake?” - and its hypothesis can be answered. The
reasoning for the difference between reward functions was already highlighted in the discussion, it is clear that
the Manhattan-based reward function was the best overall, it continued to improve even after the maximum
number of games was reached while all the other functions had plateaued in their performance. The Manhattan
reward-based function performs well because it minimizes the sparse rewards problem, it gives rewards for
intermediate states. Giving a reward when the snake turns in the correct direction that will minimize the distance
to the apple, helps the agent create a strategy that is based on one of the best Snake game heuristics. While the
Inverse Manhattan reward-based function also uses reward shaping as a mechanism to incentivize traveling close
to the apple, the training model suffers from the exploitation vs. exploration problem in which it is content with
the minimal points obtained instead of finding a greater sum of points further away. The other reward functions
were still quite sparse, and this created the delay reward problem to become apparent and plateau the snake’s
performance. Overall the performance could have been better analyzed if the implementation of a convolutional
layer was added to the DQN, this would have most likely prevented the stagnation in the maximum average
score that is apparent in the current results.

11 FUTURE WORK
In potential future work, the work done in this paper about testing an agent’s performance under varying reward
functions could be extended with hyperparameter tuning to test and observe its influences. Hyperparameters play
a significant role in reinforcement learning and directly influence the performance of an agent. Hyperparameters
are set by the developers of the model and can be quite time consuming. Nevertheless, hyperparameter tuning
could change the performance of the presented reward functions and it would be worthwhile to test if poorly
performing reward functions could be improved. In addition to the hyperparameter tuning DeepMind’s EPIC
method could be used to quantify differences between reward functions prior to the optimization step to avoid
wasting training time on poorly performing functions [7].

Another interesting area to explore is training with multiple snakes. Training with multiple snakes is an
area of machine learning which involves multi-agent systems. This exploration would allow an understanding
of how snakes interact and observe their respective environment and each other. Multi-agent reinforcement
learning expands upon conventional reinforcement learning by adding the challenge of other agents. One of these
challenges comes from the fact that adding more agents means that a previously deterministic environment is
turned into a stochastic one from a single agent’s perspective [4]. In addition, generating a learning goal, keeping
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track of other agents’ learning, coordinating behavior, and scalability can hinder the success of multi-agent
reinforcement learning models [3]. There have, however, been models which have been developed to deal with
multiple learners successfully, such as coordination-free methods, which include the Team Q-learning algorithm
and Distributed Q-learning algorithm, as well as coordination-based methods, and indirect coordination methods
[3]. These models could represent interesting research areas to explore.

Another area of potential research is changing the environment. This could lead to an in-depth understanding
of how agents interact in dynamic environments. Moreover, it could be explored how changes in the environment
influence not only one snake, but also the learning of multiple snakes. The changes in the environment could
be the amount of food, the number of snakes or changes in the game map by adding more walls or labyrinths.
Furthermore, the application of different reward functions and different algorithms in different games, such as
Pacman or Attari, could be researched. This field of research would allow a new perspective on how specific
reward functions and algorithms influence and track the outcome of the long-term strategies developed by the
agent in the respective games.
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A DATA FOR THE 10 POINT THRESHOLD

Fig. 8. Number of games at which an agent crossed the 10 point average threshold

B DETAILED STATISTICAL RESULTS

Fig. 9. t-test between the simple reward function and the Manhattan distance
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Fig. 10. t-test between the simple reward function and the Increased reward

Fig. 11. t-test between the simple reward function and the Punishment reward function
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Fig. 12. t-test between the simple reward function and the Inverse of the Manhattan distance

C CODE FOR THE SIMPLE REWARD

Fig. 13. Code for the simple reward
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D CODE FOR THE MANHATTAN DISTANCE

Fig. 14. Code for the Manhattan distance

Fig. 15. Code for the Manhattan distance

Fig. 16. Code for the Manhattan distance
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E CODE FOR THE INVERSE OF THE MANHATTAN DISTANCE

Fig. 17. Code for the Inverse of theManhattan distance

Fig. 18. Code for the Inverse of the Manhattan distance

F CODE FOR THE PUNISHMENT REWARD

Fig. 19. Code for the punishment reward
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G CODE FOR THE INCREASING REWARD

Fig. 20. Code for the increasing reward
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